刘沙河 刘沙河
首页
  • Go语言基础

    • 数据类型
    • 反射
    • Go指针
  • Go语言进阶

    • go泛型
    • go条件编译
    • cgo教程
    • Go协程调度原理及GPM模型
    • Go内存管理
    • Go垃圾回收机制
    • Go语言内存对齐
  • Go语言实现原理

    • channel 实现原理
    • slice 实现原理
    • map 实现原理
    • sync.Mutex 实现原理
    • 乐观锁CAS 实现原理
    • singlefight 实现原理
  • gin框架

    • gin中间件原理
    • gin路由原理
  • gorm

    • GORM介绍和使用
    • GORM_CURD操作指南
  • go测试

    • benchmark基准测试
    • pprof 性能分析
  • python进阶

    • Numpy&Pandas
    • celery分布式任务队列
  • Django

    • Django 常见命令
    • middleware中间件
    • Django缓存系统
    • Django信号系统
    • Django REST Framework
  • Flask

    • Flask基础知识总结
    • Flask-SQLAlchemy
  • 爬虫

    • aiohttp
    • scrapy框架
  • Mysql

    • Mysql存储引擎和索引
    • MySQL主从复制
    • Mysql读写分离
    • 数据库分库分表
    • Mysql锁
    • Mysql事务和MVCC原理
    • 分库分表带来的读扩散问题
  • Redis

    • redis基础和数据类型
    • redis主从架构
    • redis哨兵架构
    • redis集群模式
    • 如何保证缓存和数据库双写一致
    • redis底层数据结构
    • redis分布式锁
  • Elasticsearch

    • es基本概念
    • es基础语法
    • es倒排索引
  • etcd

    • Go操作etcd
    • Raft原理
    • etcd分布式锁
  • kafka

    • 消息队列MQ总结
    • kafka 概述及原理
    • kafka 消费问题记录
    • 零拷贝技术
    • kafka分区规范
  • RabbitMQ

    • rabbitMQ基础
    • Go操作rabbitmq
  • RocketMQ

    • 可靠消息队列 rocketMQ
  • Http&Https

    • http&https
    • TCP和UDP
    • Ping 原理
  • RPC

    • RPC初识
    • grpc初识和实现
  • gRPC

    • grpc 初识
    • grpc 上下文 metadata
    • grpc 健康检查
    • grpc keepalive
    • grpc 命名解析
    • grpc 中间件&拦截器
    • grpc 负载均衡
    • grpc 身份认证
    • grpc 超时重试
    • grpc 链路追踪
    • grpc-gw将gRPC转RESTfu api
    • grpc-gw自定义选项
  • protobuf

    • protobuf 进阶
    • protobuf 编码原理
  • Docker

    • Docker基础
    • Docker常用命令
    • Dockerfile
    • Docker-Compose
    • Docker多阶段构建
    • Docker Config 教程
    • Docker Swarm 教程
    • Docker Stack 教程
    • Docker Buildx 教程
  • k8s

    • k8s 基础概念
    • k8s 集群架构
    • k8s 工作负载
    • Pod 网络
    • Service 网络
    • 外部接入网络
    • 一张图搞懂k8s各种pod
    • k8s 存储抽象
    • mac快速启动k8s
    • 自制申威架构k8s-reloader
  • go-kit

    • go-kit初识
    • go-kit启动http服务
    • go-kit集成gin启动服务
    • go-kit集成grpc和protobuf
    • go-kit中间件
    • go-kit服务注册发现与负载均衡
    • go-kit限流和熔断
    • go-kit链路追踪
    • go-kit集成Prometheus
  • 设计模式

    • 初识设计模式
    • 创建型模式
    • 结构型模式
    • 行为模式
  • 数据结构

    • 时间轮
    • 堆、双向链表、环形队列
    • 队列:优先队列
    • 队列:延迟队列
  • 算法

    • 递归算法
    • 枚举算法
    • 动态规划
    • 回溯算法
    • 分治算法
    • 贪心算法
    • LRU和LFU
    • 一致性哈希

花开半夏,半夏花开
首页
  • Go语言基础

    • 数据类型
    • 反射
    • Go指针
  • Go语言进阶

    • go泛型
    • go条件编译
    • cgo教程
    • Go协程调度原理及GPM模型
    • Go内存管理
    • Go垃圾回收机制
    • Go语言内存对齐
  • Go语言实现原理

    • channel 实现原理
    • slice 实现原理
    • map 实现原理
    • sync.Mutex 实现原理
    • 乐观锁CAS 实现原理
    • singlefight 实现原理
  • gin框架

    • gin中间件原理
    • gin路由原理
  • gorm

    • GORM介绍和使用
    • GORM_CURD操作指南
  • go测试

    • benchmark基准测试
    • pprof 性能分析
  • python进阶

    • Numpy&Pandas
    • celery分布式任务队列
  • Django

    • Django 常见命令
    • middleware中间件
    • Django缓存系统
    • Django信号系统
    • Django REST Framework
  • Flask

    • Flask基础知识总结
    • Flask-SQLAlchemy
  • 爬虫

    • aiohttp
    • scrapy框架
  • Mysql

    • Mysql存储引擎和索引
    • MySQL主从复制
    • Mysql读写分离
    • 数据库分库分表
    • Mysql锁
    • Mysql事务和MVCC原理
    • 分库分表带来的读扩散问题
  • Redis

    • redis基础和数据类型
    • redis主从架构
    • redis哨兵架构
    • redis集群模式
    • 如何保证缓存和数据库双写一致
    • redis底层数据结构
    • redis分布式锁
  • Elasticsearch

    • es基本概念
    • es基础语法
    • es倒排索引
  • etcd

    • Go操作etcd
    • Raft原理
    • etcd分布式锁
  • kafka

    • 消息队列MQ总结
    • kafka 概述及原理
    • kafka 消费问题记录
    • 零拷贝技术
    • kafka分区规范
  • RabbitMQ

    • rabbitMQ基础
    • Go操作rabbitmq
  • RocketMQ

    • 可靠消息队列 rocketMQ
  • Http&Https

    • http&https
    • TCP和UDP
    • Ping 原理
  • RPC

    • RPC初识
    • grpc初识和实现
  • gRPC

    • grpc 初识
    • grpc 上下文 metadata
    • grpc 健康检查
    • grpc keepalive
    • grpc 命名解析
    • grpc 中间件&拦截器
    • grpc 负载均衡
    • grpc 身份认证
    • grpc 超时重试
    • grpc 链路追踪
    • grpc-gw将gRPC转RESTfu api
    • grpc-gw自定义选项
  • protobuf

    • protobuf 进阶
    • protobuf 编码原理
  • Docker

    • Docker基础
    • Docker常用命令
    • Dockerfile
    • Docker-Compose
    • Docker多阶段构建
    • Docker Config 教程
    • Docker Swarm 教程
    • Docker Stack 教程
    • Docker Buildx 教程
  • k8s

    • k8s 基础概念
    • k8s 集群架构
    • k8s 工作负载
    • Pod 网络
    • Service 网络
    • 外部接入网络
    • 一张图搞懂k8s各种pod
    • k8s 存储抽象
    • mac快速启动k8s
    • 自制申威架构k8s-reloader
  • go-kit

    • go-kit初识
    • go-kit启动http服务
    • go-kit集成gin启动服务
    • go-kit集成grpc和protobuf
    • go-kit中间件
    • go-kit服务注册发现与负载均衡
    • go-kit限流和熔断
    • go-kit链路追踪
    • go-kit集成Prometheus
  • 设计模式

    • 初识设计模式
    • 创建型模式
    • 结构型模式
    • 行为模式
  • 数据结构

    • 时间轮
    • 堆、双向链表、环形队列
    • 队列:优先队列
    • 队列:延迟队列
  • 算法

    • 递归算法
    • 枚举算法
    • 动态规划
    • 回溯算法
    • 分治算法
    • 贪心算法
    • LRU和LFU
    • 一致性哈希
  • Mysql

  • Redis

    • redis基础和数据类型
    • redis缓存穿透、缓存雪崩、缓存击穿
    • redis高阶使用
    • 布隆过滤器与缓存穿透
    • redis持久化存储
      • Redis持久化的意义
      • Redis持久化方式
        • 1. RDB (快照)
        • a.优点
        • b.缺点
        • 2. AOF (日志)
        • a. 优点
        • b. 缺点
        • 3. RDB原理
      • RDB 和 AOF 选型
    • redis线程模型
    • redis过期策略
    • redis主从架构
    • redis哨兵架构
    • redis集群模式
    • redis高并发和高可用
    • 如何保证缓存和数据库双写一致
    • redis为什么那么快
    • redis分布式锁
    • redis事务和watch
    • redis 底层数据结构
  • elasticsearch

  • etcd

  • Database
  • Redis
bigox
2022-07-01
目录

redis持久化存储

# Redis持久化的意义

  • Redis持久化的意义,在于故障恢复,也属于高可用的一个环节

  • 当存放在内存中数据,会因为Redis的突然挂掉,而导致数据丢失

    image-20220615160217894

  • Redis的持久化,就是将内存中的数据,持久化到磁盘上中,然后将磁盘上的数据放到阿里云ODPS中

    image-20220615160255536

# Redis持久化方式

  • 通过AOF和RDB,都可以将Redis内存中的数据给持久化到磁盘上面来,然后可以将这些数据备份到其它地方去,例如阿里云的OOS。

  • 如果Redis挂了,服务器上的内存和磁盘上的数据都丢了,可以从云服务上拷贝回来之前的数据,放到指定的目录下,然后重新启动Redis,Redis就会自动根据持久化数据文件,去恢复内存中的数据,继续对外提供服务。

  • 如果同时使用RDB和AOF两种持久化机制,那么在Redis重启的时候,会使用AOF来重新构建数据,因为AOF中的数据更加完整。

# 1. RDB (快照)

  • 每个一段时间进行一次完整的快照

# a.优点

适合做冷备份

  • RDB会生成多个数据文件,每个数据文件都代表了某个时刻中Redis的数据,这种多个数据文件的方式,非常适合做冷备份,可以将这种完整的数据文件发送到一些远程的安全存储上去,例如阿里云ODPS分布式存储上,以预定好的备份策略来定期备份Redis中的数据
    • RDB也可以做冷备份,生成多个文件,每个文件代表了某个时刻的完整的数据快照
    • AOF也可以做冷备,只有一个文件,但是你可以每隔一段时间,去copy一份文件出来
    • RDB做冷备份的优势在于,可以由Redis去控制固定时长生成快照文件的事情,比较方便。AOF还需要自己写一些脚本去做这个事情,各种定时。
  • RDB对Redis对外提供的读写服务,影响非常小,可以让Redis保持高性能,因为Redis主进程只需要fork一个子进程,让子进程执行磁盘IO操作来进行RDB持久化即可。
    • RDB每次写都是些Redis内存的,只是在一定的时间内,才将数据写入磁盘
    • AOF每次都要写文件,虽然可以快速写入 OS Cache中,但是还是会有一定的时间开销,速度肯定比RDB略慢一点。
  • 相对于AOF持久化机制来说,直接基于RDB数据文件来重启和恢复Redis进程,更加快速。
    • RDB数据做冷备份,在最坏的情况下,提供数据恢复的时候,速度比AOF快。
    • AOF,存放的指令日志,做数据恢复的时候,其实是要回放和执行所有的指令日志,来恢复出来内存中的所有数据的,而RDB就是一份数据文件,恢复的时候,直接加载进内存即可。

# b.缺点

  • 如果想要在Redis故障时,尽可能的少丢失数据,那么RDB没有AOF好,一般来说,RDB数据快照文件,都是每隔5分钟,或者更长时间生成一次,这个时候就得接受一旦Redis经常宕机,那么丢失最近5分钟的数据。
  • RDB每次在fork子进程来执行RDB快照数据生成的时候,如果数据文件特别大,可能会导致对客户端提供的服务暂停数毫秒,或者甚至数秒
    • 一般不要让RDB的间隔太长,否则每次生成的RDB文件太长,会对Redis本身的性能会有影响

# 2. AOF (日志)

  • Redis将内存中的数据,存放到一个AOF文件中,但是因为Redis只会写一个AOF文件,因此这个AOF文件会越来越大。

  • AOF机制对每条写入命令作为日志,以append-only的模式写入一个日志文件中,在Redis重启的时候,可以通过回放AOF日志中的写入指令来重新构建整个数据集。

    image-20220616145627442

  • 因为Redis中的数据是有一定限量的,不可能说Redis内存中的数据不限量增长,进而导致AOF无限量增长。

  • 内存大小是一定的,到一定时候,Redis就会用缓存淘汰算法,LRU,自动将一部分数据从内存中给清除。

  • AOF,是存放每条写命令的,所以会不断的膨胀,当大到一定的时候,AOF做rewrite操作。

  • AOF rewrite操作,就会基于当时redis内存中的数据,来重新构造一个更小的AOF文件,然后将旧的膨胀的很大的文件给删了。从而解决redis AOF文件越来越大的问题

    image-20220616145645308

# a. 优点

  • AOF可以更好的保护数据不丢失,一般AOF会间隔一秒,通过一个后台线程执行一次fsync操作,最多丢失1秒
  • AOF日志文件以append-only模式写入,所有没有任何磁盘寻址开销,写入性能非常高,而且文件不容易破损,即使文件尾部破损,也很容易快速修复。
  • AOF日志文件及时过大的时候,出现后台的重写操作,也不会影响客户端的读写,因为rewrite log 的时候,会对其中的数据进行压缩,创建出一份需要恢复数据的最小日志出来,再创建新日志文件的时候,老的日志文件还是照常写入,当新的merge后的日志文件ready的时候,再交换新老日志文件即可。
  • AOF日志文件的命令通过非常可读的方式进行记录,这个特性非常适合做灾难性的误删除的紧急恢复,比如某人不小心用了 flushall命令,清空了整个Redis数据,只要这个时候后台rewrite还没有发生,那么就可以立即拷贝AOF文件,将最后一条flushall命令删除了,然后再将该AOF文件放回去,就可以通过恢复机制,自动回复所有的数据。

# b. 缺点

  • 对于同一份数据来说,AOF日志通常比RDB数据快照文件更大
  • AOF开启后,支持写QPS会比RDB支持的写QPS低,因为AOF一般会配置成每秒fsync一次日志文件,因此这也就造成了性能不是很高。
    • 如果你要保证一条数据都不丢,也可以的,AOF的fsync设置成每次写入一条数据,fsync一次,这样Redis的QPS会大降。
  • AOF这种较为复杂的基于命令日志/merge/回放的方式,比基于RDB每次持久化一份完整的数据快照的方式,更加脆弱一些,容易有BUG,不过AOF就是为了避免rewrite过程导致的BUG,因此每次rewrite并不是基于旧的指令来进行merge的,而是基于当时内存中数据进行指令的重新构建,这与健壮性会好一些。
  • 唯一的缺点:就是做数据恢复的时候,会比较慢,还有做冷备,定期的被封,不太方便,要自己手动写复杂的脚本去做。

# 3. RDB原理

  • 其实就是通过写时复制技术Copy-On-Write完成的,当需要进行快照时,如果数据有更新,会生成一个数据副本,如图中的“键值对C”,当进行快照时,数据如果未更新,直接落盘,数据如果有更新,同步副本数据即可。

# RDB 和 AOF 选型

  • 不要仅仅使用RDB,因为那样会导致你丢失很多的数据
  • 也不要仅仅使用AOF,因为这样有两个问题
    • AOF做冷备,没有RDB冷备恢复快
    • RDB每次简单粗暴的生成数据快照,更加健壮,可以避免AOF这种复杂的被封和恢复机制的BUG
  • 综合使用AOF和RDB两种持久化机制,用AOF来保证数据不丢失,作为数据恢复的第一选择,用RDB来做不同程度的冷备,在AOF文件都丢失或者损坏不可用的时候,可以使用RDB来进行快速的数据恢复。
#数据库#
上次更新: 2023/04/16, 18:35:33
布隆过滤器与缓存穿透
redis线程模型

← 布隆过滤器与缓存穿透 redis线程模型→

最近更新
01
go与http代理
05-24
02
自制申威架构k8s-reloader
12-06
03
Docker Buildx 教程
12-01
更多文章>
Theme by Vdoing | Copyright © 2020-2024 小刘扎扎 | MIT License
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式