刘沙河 刘沙河
首页
  • Go语言基础

    • 数据类型
    • 反射
    • Go指针
  • Go语言进阶

    • go泛型
    • go条件编译
    • cgo教程
    • Go协程调度原理及GPM模型
    • Go内存管理
    • Go垃圾回收机制
    • Go语言内存对齐
  • Go语言实现原理

    • channel 实现原理
    • slice 实现原理
    • map 实现原理
    • sync.Mutex 实现原理
    • 乐观锁CAS 实现原理
    • singlefight 实现原理
  • gin框架

    • gin中间件原理
    • gin路由原理
  • gorm

    • GORM介绍和使用
    • GORM_CURD操作指南
  • go测试

    • benchmark基准测试
    • pprof 性能分析
  • python进阶

    • Numpy&Pandas
    • celery分布式任务队列
  • Django

    • Django 常见命令
    • middleware中间件
    • Django缓存系统
    • Django信号系统
    • Django REST Framework
  • Flask

    • Flask基础知识总结
    • Flask-SQLAlchemy
  • 爬虫

    • aiohttp
    • scrapy框架
  • Mysql

    • Mysql存储引擎和索引
    • MySQL主从复制
    • Mysql读写分离
    • 数据库分库分表
    • Mysql锁
    • Mysql事务和MVCC原理
    • 分库分表带来的读扩散问题
  • Redis

    • redis基础和数据类型
    • redis主从架构
    • redis哨兵架构
    • redis集群模式
    • 如何保证缓存和数据库双写一致
    • redis底层数据结构
    • redis分布式锁
  • Elasticsearch

    • es基本概念
    • es基础语法
    • es倒排索引
  • etcd

    • Go操作etcd
    • Raft原理
    • etcd分布式锁
  • kafka

    • 消息队列MQ总结
    • kafka 概述及原理
    • kafka 消费问题记录
    • 零拷贝技术
    • kafka分区规范
  • RabbitMQ

    • rabbitMQ基础
    • Go操作rabbitmq
  • RocketMQ

    • 可靠消息队列 rocketMQ
  • Http&Https

    • http&https
    • TCP和UDP
    • Ping 原理
  • RPC

    • RPC初识
    • grpc初识和实现
  • gRPC

    • grpc 初识
    • grpc 上下文 metadata
    • grpc 健康检查
    • grpc keepalive
    • grpc 命名解析
    • grpc 中间件&拦截器
    • grpc 负载均衡
    • grpc 身份认证
    • grpc 超时重试
    • grpc 链路追踪
    • grpc-gw将gRPC转RESTfu api
    • grpc-gw自定义选项
  • protobuf

    • protobuf 进阶
    • protobuf 编码原理
  • Docker

    • Docker基础
    • Docker常用命令
    • Dockerfile
    • Docker-Compose
    • Docker多阶段构建
    • Docker Config 教程
    • Docker Swarm 教程
    • Docker Stack 教程
    • Docker Buildx 教程
  • k8s

    • k8s 基础概念
    • k8s 集群架构
    • k8s 工作负载
    • Pod 网络
    • Service 网络
    • 外部接入网络
    • 一张图搞懂k8s各种pod
    • k8s 存储抽象
    • mac快速启动k8s
    • 自制申威架构k8s-reloader
  • go-kit

    • go-kit初识
    • go-kit启动http服务
    • go-kit集成gin启动服务
    • go-kit集成grpc和protobuf
    • go-kit中间件
    • go-kit服务注册发现与负载均衡
    • go-kit限流和熔断
    • go-kit链路追踪
    • go-kit集成Prometheus
  • 设计模式

    • 初识设计模式
    • 创建型模式
    • 结构型模式
    • 行为模式
  • 数据结构

    • 时间轮
    • 堆、双向链表、环形队列
    • 队列:优先队列
    • 队列:延迟队列
  • 算法

    • 递归算法
    • 枚举算法
    • 动态规划
    • 回溯算法
    • 分治算法
    • 贪心算法
    • LRU和LFU
    • 一致性哈希

花开半夏,半夏花开
首页
  • Go语言基础

    • 数据类型
    • 反射
    • Go指针
  • Go语言进阶

    • go泛型
    • go条件编译
    • cgo教程
    • Go协程调度原理及GPM模型
    • Go内存管理
    • Go垃圾回收机制
    • Go语言内存对齐
  • Go语言实现原理

    • channel 实现原理
    • slice 实现原理
    • map 实现原理
    • sync.Mutex 实现原理
    • 乐观锁CAS 实现原理
    • singlefight 实现原理
  • gin框架

    • gin中间件原理
    • gin路由原理
  • gorm

    • GORM介绍和使用
    • GORM_CURD操作指南
  • go测试

    • benchmark基准测试
    • pprof 性能分析
  • python进阶

    • Numpy&Pandas
    • celery分布式任务队列
  • Django

    • Django 常见命令
    • middleware中间件
    • Django缓存系统
    • Django信号系统
    • Django REST Framework
  • Flask

    • Flask基础知识总结
    • Flask-SQLAlchemy
  • 爬虫

    • aiohttp
    • scrapy框架
  • Mysql

    • Mysql存储引擎和索引
    • MySQL主从复制
    • Mysql读写分离
    • 数据库分库分表
    • Mysql锁
    • Mysql事务和MVCC原理
    • 分库分表带来的读扩散问题
  • Redis

    • redis基础和数据类型
    • redis主从架构
    • redis哨兵架构
    • redis集群模式
    • 如何保证缓存和数据库双写一致
    • redis底层数据结构
    • redis分布式锁
  • Elasticsearch

    • es基本概念
    • es基础语法
    • es倒排索引
  • etcd

    • Go操作etcd
    • Raft原理
    • etcd分布式锁
  • kafka

    • 消息队列MQ总结
    • kafka 概述及原理
    • kafka 消费问题记录
    • 零拷贝技术
    • kafka分区规范
  • RabbitMQ

    • rabbitMQ基础
    • Go操作rabbitmq
  • RocketMQ

    • 可靠消息队列 rocketMQ
  • Http&Https

    • http&https
    • TCP和UDP
    • Ping 原理
  • RPC

    • RPC初识
    • grpc初识和实现
  • gRPC

    • grpc 初识
    • grpc 上下文 metadata
    • grpc 健康检查
    • grpc keepalive
    • grpc 命名解析
    • grpc 中间件&拦截器
    • grpc 负载均衡
    • grpc 身份认证
    • grpc 超时重试
    • grpc 链路追踪
    • grpc-gw将gRPC转RESTfu api
    • grpc-gw自定义选项
  • protobuf

    • protobuf 进阶
    • protobuf 编码原理
  • Docker

    • Docker基础
    • Docker常用命令
    • Dockerfile
    • Docker-Compose
    • Docker多阶段构建
    • Docker Config 教程
    • Docker Swarm 教程
    • Docker Stack 教程
    • Docker Buildx 教程
  • k8s

    • k8s 基础概念
    • k8s 集群架构
    • k8s 工作负载
    • Pod 网络
    • Service 网络
    • 外部接入网络
    • 一张图搞懂k8s各种pod
    • k8s 存储抽象
    • mac快速启动k8s
    • 自制申威架构k8s-reloader
  • go-kit

    • go-kit初识
    • go-kit启动http服务
    • go-kit集成gin启动服务
    • go-kit集成grpc和protobuf
    • go-kit中间件
    • go-kit服务注册发现与负载均衡
    • go-kit限流和熔断
    • go-kit链路追踪
    • go-kit集成Prometheus
  • 设计模式

    • 初识设计模式
    • 创建型模式
    • 结构型模式
    • 行为模式
  • 数据结构

    • 时间轮
    • 堆、双向链表、环形队列
    • 队列:优先队列
    • 队列:延迟队列
  • 算法

    • 递归算法
    • 枚举算法
    • 动态规划
    • 回溯算法
    • 分治算法
    • 贪心算法
    • LRU和LFU
    • 一致性哈希
  • Mysql

  • Redis

    • redis基础和数据类型
    • redis缓存穿透、缓存雪崩、缓存击穿
    • redis高阶使用
    • 布隆过滤器与缓存穿透
    • redis持久化存储
    • redis线程模型
    • redis过期策略
    • redis主从架构
    • redis哨兵架构
      • Redis主从架构如何高可用
      • Redis哨兵架构
        • 1. 哨兵介绍
        • 2. 哨兵的核心知识
        • 3. 哨兵选举机制
        • a. 两个哨兵 ❎
        • b. 三个哨兵 ✅
      • Redis主备切换的数据丢失问题
        • 1. 异步复制
        • 2. 集群脑裂
        • 3. 解决办法
    • redis集群模式
    • redis高并发和高可用
    • 如何保证缓存和数据库双写一致
    • redis为什么那么快
    • redis分布式锁
    • redis事务和watch
    • redis 底层数据结构
  • elasticsearch

  • etcd

  • Database
  • Redis
bigox
2022-07-01
目录

redis哨兵架构

哨兵详细文档 (opens new window)

# Redis主从架构如何高可用

  • 方案

    • 当Redis的master节点宕机后,redis的高可用架构中,有一个故障转移,叫failover,也可以做主备切换。

    redis基于哨兵的高可用性

  • Redis高可用:如果用主从架构部署,在加上哨兵就可以实现任何一个实例宕机,就会自动进行主备切换。

# Redis哨兵架构

# 1. 哨兵介绍

  • entinal,中文名是哨兵

  • 哨兵是redis集群架构中非常重要的一个组件,主要功能如下

    • 集群监控,负责监控redis master和slave进程是否正常工作
    • 消息通知,如果某个redis实例有故障,那么哨兵负责发送消息作为报警通知给管理员
    • 故障转移,如果master node挂掉了,会自动转移到slave node上
    • 配置中心,如果故障转移发生了,通知client客户端新的master地址
  • 哨兵本身也是分布式的,作为一个哨兵集群去运行,互相协同工作

    • 故障转移时,判断一个master node是宕机了,需要大部分的哨兵都同意才行,涉及到了分布式选举的问题
    • 即使部分哨兵节点挂掉了,哨兵集群还是能正常工作的,因为如果一个作为高可用机制重要组成部分的故障转移系统本身是单点的,那就很坑爹了
  • 目前采用的是sentinal 2版本,sentinal 2相对于sentinal 1来说,重写了很多代码,主要是让故障转移的机制和算法变得更加健壮和简单

# 2. 哨兵的核心知识

  • 哨兵至少需要3个实例,来保证自己的健壮性
  • 哨兵 + redis主从的部署架构,是不会保证数据零丢失的,只能保证redis集群的高可用性
  • 对于哨兵 + redis主从这种复杂的部署架构,尽量在测试环境和生产环境,都进行充足的测试和演练

# 3. 哨兵选举机制

  • 哨兵集群必须部署2个以上节点

# a. 两个哨兵 ❎

  • 如果哨兵集群仅仅部署了个2个哨兵实例,s1 和 s2,quorum=1

    +----+         +----+
    | M1 |---------| R1 |
    | S1 |         | S2 |
    +----+         +----+
    
    1
    2
    3
    4
  • Configuration: quorum = 1

  • master宕机,s1和s2中只要有1个哨兵认为master宕机就可以还行切换,同时s1和s2中会选举出一个哨兵来执行故障转移同时这个时候,需要majority,也就是大多数哨兵都是运行的,2个哨兵的majority就是2(2的majority=2,3的majority=2,5的majority=3,4的majority=2),2个哨兵都运行着,就可以允许执行故障转移但是如果整个M1和S1运行的机器宕机了,那么哨兵只有1个了,此时就没有majority来允许执行故障转移,虽然另外一台机器还有一个R1,但是故障转移不会执行

# b. 三个哨兵 ✅

       +----+
       | M1 |
       | S1 |
       +----+
          |
+----+    |    +----+
| R2 |----+----| R3 |
| S2 |         | S3 |
+----+         +----+
1
2
3
4
5
6
7
8
9

Configuration: quorum = 2,majority

如果M1所在机器宕机了,那么三个哨兵还剩下2个,S2和S3可以一致认为master宕机,然后选举出一个来执行故障转移,同时3个哨兵的majority是2,所以还剩下的2个哨兵运行着,就可以允许执行故障转移

# Redis主备切换的数据丢失问题

  1. 异步复制数据丢失: 因为master -> slave的复制是异步的,所以可能有部分数据还没复制到slave,master就宕机了,此时这些部分数据就丢失了。
  2. 脑裂导致的数据丢失.

# 1. 异步复制

  • 因为master -> slave的复制是异步的,所以可能有部分数据还没复制到slave,master就宕机了,此时这些部分数据就丢失了。

# 2. 集群脑裂

  • 脑裂,也就是说,某个master所在机器突然脱离了正常的网络,跟其他slave机器不能连接,但是实际上master还运行着,此时哨兵可能就会认为master宕机了,然后开启选举,将其他slave切换成了master

  • 这个时候,集群里就会有两个master,也就是所谓的脑裂。此时虽然某个slave被切换成了master,但是可能client还没来得及切换到新的master,还继续写向旧master的数据可能也丢失了

  • 因此旧master再次恢复的时候,会被作为一个slave挂到新的master上去,自己的数据会清空,重新从新的master复制数据; 同时原来的master节点上的,client像 旧的 master中写入数据,当网络分区恢复正常后,client写的数据就会因为复制,导致数据的丢失。

    image-20220615193015108

# 3. 解决办法

min-slaves-to-write 1
min-slaves-max-lag 10
1
2
  • 要求至少有1个slave,数据复制和同步的延迟不能超过10秒

  • 如果说一旦所有的slave,数据复制和同步的延迟都超过了10秒钟,那么这个时候,master就不会再接收任何请求了,上面两个配置可以减少异步复制和脑裂导致的数据丢失

  1. 减少异步复制的数据丢失

    • 有了min-slaves-max-lag这个配置,就可以确保说,一旦slave复制数据和ack延时太长,就认为可能master宕机后损失的数据太多了,那么就拒绝写请求,这样可以把master宕机时由于部分数据未同步到slave导致的数据丢失降低的可控范围内

    image-20220615193308313

  2. 减少脑裂的数据丢失

    • 如果一个master出现了脑裂,跟其他slave丢了连接,那么上面两个配置可以确保说,如果不能继续给指定数量的slave发送数据,而且slave超过10秒没有给自己ack消息,那么就直接拒绝客户端的写请求,这样脑裂后的旧master就不会接受client的新数据,也就避免了数据丢失,上面的配置就确保了,如果跟任何一个slave丢了连接,在10秒后发现没有slave给自己ack,那么就拒绝新的写请求,因此在脑裂场景下,最多就丢失10秒的数据

    image-20220615193426456

#数据库#
上次更新: 2023/04/16, 18:35:33
redis主从架构
redis集群模式

← redis主从架构 redis集群模式→

最近更新
01
go与http代理
05-24
02
自制申威架构k8s-reloader
12-06
03
Docker Buildx 教程
12-01
更多文章>
Theme by Vdoing | Copyright © 2020-2024 小刘扎扎 | MIT License
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式