redis 底层数据结构
# Redis 常见数据类型
3.0版本之前数据结构
数据类型 底层数据结构 String(字符串) SDS 动态字符串 List(列表) 压缩列表 + 双端链表 Set(集合-无序) hash表 ZSet(集合-有序) 压缩列表 + 跳跃表 Hash(哈希类型) hash表 + 压缩列表 3.0版本之后数据结构
数据类型 底层数据结构 String(字符串) SDS 动态字符串 List(列表) quicklist Set(集合-无序) hash表 ZSet(集合-有序) listpack + 跳跃表 Hash(哈希类型) hash表 +listpack
# Redis 键值对数据库实现原理
Redis 的键值对中的 key 就是字符串对象,而 value 可以是字符串对象,也可以是集合数据类型的对象,比如 List 对象、Hash 对象、Set 对象和 Zset 对象。
demo
> SET name "xiaolincoding" OK > HSET person name "xiaolincoding" age 18 0 > RPUSH stu "xiaolin" "xiaomei" (integer) 4
1
2
3
4
5
6
7- 第一条命令:name 是一个字符串键,因为键的值是一个字符串对象;
- 第二条命令:person 是一个哈希表键,因为键的值是一个包含两个键值对的哈希表对象;
- 第三条命令:stu 是一个列表键,因为键的值是一个包含两个元素的列表对象;
Redis 是使用了一个「哈希表」保存所有键值对(这个hash表的负载因子是1),哈希表的最大好处就是让我们可以用 O(1) 的时间复杂度来快速查找到键值对。哈希表其实就是一个数组,数组中的元素叫做哈希桶。
- 负载因子 = 键数量/bucket数量
- 哈希表需要将负载因子控制在合适的大小,超过其阀值需要进行rehash,也即键值对重新组织:
哈希因子过小,说明空间利用率低
哈希因子过大,说明冲突严重,存取效率低
- 每个哈希表的实现对负载因子容忍程度不同,Redis实现中负载因子大于1时就会触发rehash,而Go则在在负载因子达到6.5时才会触发rehash,因为Redis的每个bucket只能存1个键值对,而Go的bucket可能存8个键值对,所以Go可以容忍更高的负载因子。
哈希桶存放的是指向键值对数据的指针(dictEntry*),这样通过指针就能找到键值对数据,然后因为键值对的值可以保存字符串对象和集合数据类型的对象,所以键值对的数据结构中并不是直接保存值本身,而是保存了 void * key 和 void * value 指针,分别指向了实际的键对象和值对象,这样一来,即使值是集合数据,也可以通过 void * value 指针找到。
# Redis 底层数据结构
# 1. SDS 动态字符串
C 语言的字符串的缺陷
- C 语言的字符串其实就是一个字符数组,即数组中每个元素是字符串中的一个字符
- C 语言获取字符串长度的时间复杂度是 O(N), 就是获取字符串长度的时候需要遍历字符串
- 字符串的结尾是以 “\0” 字符标识,字符串里面不能包含有 “\0” 字符,因此不能保存二进制数据;
- 字符串操作函数不高效且不安全,比如有缓冲区溢出的风险,有可能会造成程序运行终止;
SDS数据结构
- len,记录了字符串长度。这样获取字符串长度的时候,只需要返回这个成员变量值就行,时间复杂度只需要 O(1)。
- alloc,分配给字符数组的空间长度。这样在修改字符串的时候,可以通过
alloc - len
计算出剩余的空间大小,可以用来判断空间是否满足修改需求,如果不满足的话,就会自动将 SDS 的空间扩展至执行修改所需的大小,然后才执行实际的修改操作,所以使用 SDS 既不需要手动修改 SDS 的空间大小,也不会出现前面所说的缓冲区溢出的问题。 - flags,用来表示不同类型的 SDS。一共设计了 5 种类型,分别是 sdshdr5、sdshdr8、sdshdr16、sdshdr32 和 sdshdr64,后面在说明区别之处。
- buf[],字符数组,用来保存实际数据。不仅可以保存字符串,也可以保存二进制数据。
# 2. 链表
数据结构
Redis 在 listNode 结构体基础上又封装了 list 这个数据结构,这样操作起来会更方便
typedef struct list { //链表头节点 listNode *head; //链表尾节点 listNode *tail; //节点值复制函数 void *(*dup)(void *ptr); //节点值释放函数 void (*free)(void *ptr); //节点值比较函数 int (*match)(void *ptr, void *key); //链表节点数量 unsigned long len; } list;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
优缺点
- 优点
- listNode 链表节点的结构里带有 prev 和 next 指针,获取某个节点的前置节点或后置节点的时间复杂度只需O(1),而且这两个指针都可以指向 NULL,所以链表是无环链表;
- list 结构因为提供了表头指针 head 和表尾节点 tail,所以获取链表的表头节点和表尾节点的时间复杂度只需O(1);
- list 结构因为提供了链表节点数量 len,所以获取链表中的节点数量的时间复杂度只需O(1);
- listNode 链表节使用 void* 指针保存节点值,并且可以通过 list 结构的 dup、free、match 函数指针为节点设置该节点类型特定的函数,因此链表节点可以保存各种不同类型的值;
- 缺点
- 表每个节点之间的内存都是不连续的,意味着无法很好利用 CPU 缓存。能很好利用 CPU 缓存的数据结构就是数组,因为数组的内存是连续的,这样就可以充分利用 CPU 缓存来加速访问。
- 还有一点,保存一个链表节点的值都需要一个链表节点结构头的分配,内存开销较大。
- 优点
# 3. 压缩列表
压缩列表是 Redis 为了节约内存而开发的,它是由连续内存块组成的顺序型数据结构,有点类似于数组。
数据结构
- zlbytes,记录整个压缩列表占用对内存字节数;
- zltail,记录压缩列表「尾部」节点距离起始地址由多少字节,也就是列表尾的偏移量;
- zllen,记录压缩列表包含的节点数量;
- zlend,标记压缩列表的结束点,固定值 0xFF(十进制255)
优缺点
- 优点: 压缩列表的最大特点,就是它被设计成一种内存紧凑型的数据结构,占用一块连续的内存空间,不仅可以利用 CPU 缓存,而且会针对不同长度的数据,进行相应编码,这种方法可以有效地节省内存开销。
- 缺点:
- 不能保存过多的元素,否则查询效率就会降低;
- 新增或修改某个元素时,压缩列表占用的内存空间需要重新分配,甚至可能引发连锁更新的问题。
- 虽然压缩列表紧凑型的内存布局能节省内存开销,但是如果保存的元素数量增加了,或是元素变大了,会导致内存重新分配,最糟糕的是会有「连锁更新」的问题。压缩列表只会用于保存的节点数量不多的场景,只要节点数量足够小,即使发生连锁更新,也是能接受的。
# 4. 哈希表
数据结构
typedef struct dictht { //哈希表数组 dictEntry **table; //哈希表大小 unsigned long size; //哈希表大小掩码,用于计算索引值 unsigned long sizemask; //该哈希表已有的节点数量 unsigned long used; } dictht;
1
2
3
4
5
6
7
8
9
10可以看到,哈希表是一个数组(dictEntry **table),数组的每个元素是一个指向「哈希表节点(dictEntry)」的指针。
rehash流程
- 当负载因子大于等于 1 ,并且 Redis 没有在执行 bgsave 命令或者 bgrewiteaof 命令,也就是没有执行 RDB 快照或没有进行 AOF 重写的时候,就会进行 rehash 操作。
- 当负载因子大于等于 5 时,此时说明哈希冲突非常严重了,不管有没有有在执行 RDB 快照或 AOF 重写,都会强制进行 rehash 操作。
# 5. 整数集合
整数集合是 Set 对象的底层实现之一。当一个 Set 对象只包含整数值元素,并且元素数量不大时,就会使用整数集这个数据结构作为底层实现。
数据结构
typedef struct intset { //编码方式 uint32_t encoding; //集合包含的元素数量 uint32_t length; //保存元素的数组 int8_t contents[]; } intset;
1
2
3
4
5
6
7
8
# 6. 跳表 !!!
Redis 只有在 Zset 对象的底层实现用到了跳表,跳表的优势是能支持平均 O(logN) 复杂度的节点查找。
Zset 对象是唯一一个同时使用了两个数据结构来实现的 Redis 对象,这两个数据结构一个是跳表,一个是哈希表。这样的好处是既能进行高效的范围查询,也能进行高效单点查询。
typedef struct zset { dict *dict; zskiplist *zsl; } zset;
1
2
3
4Zset 对象能支持范围查询(如 ZRANGEBYSCORE 操作),这是因为它的数据结构设计采用了跳表,而又能以常数复杂度获取元素权重(如 ZSCORE 操作),这是因为它同时采用了哈希表进行索引。
# 6.1 数据结构
跳跃表数据结构
typedef struct zskiplist { struct zskiplistNode *header, *tail; unsigned long length; int level; } zskiplist;
1
2
3
4
5- 跳表的头尾节点,便于在O(1)时间复杂度内访问跳表的头节点和尾节点;
- 跳表的长度,便于在O(1)时间复杂度获取跳表节点的数量;
- 跳表的最大层数,便于在O(1)时间复杂度获取跳表中层高最大的那个节点的层数量;
链表在查找元素的时候,因为需要逐一查找,所以查询效率非常低,时间复杂度是O(N),于是就出现了跳表。跳表是在链表基础上改进过来的,实现了一种「多层」的有序链表,这样的好处是能快读定位数据。
一个层级为 3 的跳表
图中头节点有 L0~L2 三个头指针,分别指向了不同层级的节点,然后每个层级的节点都通过指针连接起来:
- L0 层级共有 5 个节点,分别是节点1、2、3、4、5;
- L1 层级共有 3 个节点,分别是节点 2、3、5;
- L2 层级只有 1 个节点,也就是节点 3 。
如果我们要在链表中查找节点 4 这个元素,只能从头开始遍历链表,需要查找 4 次,而使用了跳表后,只需要查找 2 次就能定位到节点 4,因为可以在头节点直接从 L2 层级跳到节点 3,然后再往前遍历找到节点 4。
可以看到,这个查找过程就是在多个层级上跳来跳去,最后定位到元素。当数据量很大时,跳表的查找复杂度就是 O(logN)。
# 6.2 跳跃表的查询
查找一个跳表节点的过程时,跳表会从头节点的最高层开始,逐一遍历每一层。在遍历某一层的跳表节点时,会用跳表节点中的 SDS 类型的元素和元素的权重来进行判断,共有两个判断条件:
- 如果当前节点的权重「小于」要查找的权重时,跳表就会访问该层上的下一个节点。
- 如果当前节点的权重「等于」要查找的权重时,并且当前节点的 SDS 类型数据「小于」要查找的数据时,跳表就会访问该层上的下一个节点。
如果上面两个条件都不满足,或者下一个节点为空时,跳表就会使用目前遍历到的节点的 level 数组里的下一层指针,然后沿着下一层指针继续查找,这就相当于跳到了下一层接着查找。举个例子,下图有个 3 层级的跳表。
如果要查找「元素:abcd,权重:4」的节点,查找的过程是这样的:
先从头节点的最高层开始,L2 指向了「元素:abc,权重:3」节点,这个节点的权重比要查找节点的小,所以要访问该层上的下一个节点;
但是该层上的下一个节点是空节点,于是就会跳到「元素:abc,权重:3」节点的下一层去找,也就是 leve[1];
「元素:abc,权重:3」节点的 leve[1] 的下一个指针指向了「元素:abcde,权重:4」的节点,然后将其和要查找的节点比较。虽然「元素:abcde,权重:4」的节点的权重和要查找的权重相同,但是当前节点的 SDS 类型数据「大于」要查找的数据,所以会继续跳到「元素:abc,权重:3」节点的下一层去找,也就是 leve[0];
「元素:abc,权重:3」节点的 leve[0] 的下一个指针指向了「元素:abcd,权重:4」的节点,该节点正是要查找的节点,查询结束。
# 7. quicklist
- 其实 quicklist 就是「双向链表 + 压缩列表」组合,因为一个 quicklist 就是一个链表,而链表中的每个元素又是一个压缩列表。
- 压缩列表有问题, quicklist 解决办法,通过控制每个链表节点中的压缩列表的大小或者元素个数,来规避连锁更新的问题。因为压缩列表元素越少或越小,连锁更新带来的影响就越小,从而提供了更好的访问性能。
数据结构
- quicklist 的结构体跟链表的结构体类似,都包含了表头和表尾,区别在于 quicklist 的节点是 quicklistNode。
typedef struct quicklist { //quicklist的链表头 quicklistNode *head; //quicklist的链表头 //quicklist的链表头 quicklistNode *tail; //所有压缩列表中的总元素个数 unsigned long count; //quicklistNodes的个数 unsigned long len; ... } quicklist;
1
2
3
4
5
6
7
8
9
10
11
# 8. listpack
- quicklist 虽然通过控制 quicklistNode 结构里的压缩列表的大小或者元素个数,来减少连锁更新带来的性能影响,但是并没有完全解决连锁更新的问题。
- 因为 quicklistNode 还是用了压缩列表来保存元素,压缩列表连锁更新的问题,来源于它的结构设计,所以要想彻底解决这个问题,需要设计一个新的数据结构。
- 于是,Redis 在 5.0 新设计一个数据结构叫 listpack,目的是替代压缩列表,它最大特点是 listpack 中每个节点不再包含前一个节点的长度了,压缩列表每个节点正因为需要保存前一个节点的长度字段,就会有连锁更新的隐患。