刘沙河 刘沙河
首页
  • Go语言基础

    • 数据类型
    • 反射
    • Go指针
  • Go语言进阶

    • go泛型
    • go条件编译
    • cgo教程
    • Go协程调度原理及GPM模型
    • Go内存管理
    • Go垃圾回收机制
    • Go语言内存对齐
  • Go语言实现原理

    • channel 实现原理
    • slice 实现原理
    • map 实现原理
    • sync.Mutex 实现原理
    • 乐观锁CAS 实现原理
    • singlefight 实现原理
  • gin框架

    • gin中间件原理
    • gin路由原理
  • gorm

    • GORM介绍和使用
    • GORM_CURD操作指南
  • go测试

    • benchmark基准测试
    • pprof 性能分析
  • python进阶

    • Numpy&Pandas
    • celery分布式任务队列
  • Django

    • Django 常见命令
    • middleware中间件
    • Django缓存系统
    • Django信号系统
    • Django REST Framework
  • Flask

    • Flask基础知识总结
    • Flask-SQLAlchemy
  • 爬虫

    • aiohttp
    • scrapy框架
  • Mysql

    • Mysql存储引擎和索引
    • MySQL主从复制
    • Mysql读写分离
    • 数据库分库分表
    • Mysql锁
    • Mysql事务和MVCC原理
    • 分库分表带来的读扩散问题
  • Redis

    • redis基础和数据类型
    • redis主从架构
    • redis哨兵架构
    • redis集群模式
    • 如何保证缓存和数据库双写一致
    • redis底层数据结构
    • redis分布式锁
  • Elasticsearch

    • es基本概念
    • es基础语法
    • es倒排索引
  • etcd

    • Go操作etcd
    • Raft原理
    • etcd分布式锁
  • kafka

    • 消息队列MQ总结
    • kafka 概述及原理
    • kafka 消费问题记录
    • 零拷贝技术
    • kafka分区规范
  • RabbitMQ

    • rabbitMQ基础
    • Go操作rabbitmq
  • RocketMQ

    • 可靠消息队列 rocketMQ
  • Http&Https

    • http&https
    • TCP和UDP
    • Ping 原理
  • RPC

    • RPC初识
    • grpc初识和实现
  • gRPC

    • grpc 初识
    • grpc 上下文 metadata
    • grpc 健康检查
    • grpc keepalive
    • grpc 命名解析
    • grpc 中间件&拦截器
    • grpc 负载均衡
    • grpc 身份认证
    • grpc 超时重试
    • grpc 链路追踪
    • grpc-gw将gRPC转RESTfu api
    • grpc-gw自定义选项
  • protobuf

    • protobuf 进阶
    • protobuf 编码原理
  • Docker

    • Docker基础
    • Docker常用命令
    • Dockerfile
    • Docker-Compose
    • Docker多阶段构建
    • Docker Config 教程
    • Docker Swarm 教程
    • Docker Stack 教程
    • Docker Buildx 教程
  • k8s

    • k8s 基础概念
    • k8s 集群架构
    • k8s 工作负载
    • Pod 网络
    • Service 网络
    • 外部接入网络
    • 一张图搞懂k8s各种pod
    • k8s 存储抽象
    • mac快速启动k8s
    • 自制申威架构k8s-reloader
  • go-kit

    • go-kit初识
    • go-kit启动http服务
    • go-kit集成gin启动服务
    • go-kit集成grpc和protobuf
    • go-kit中间件
    • go-kit服务注册发现与负载均衡
    • go-kit限流和熔断
    • go-kit链路追踪
    • go-kit集成Prometheus
  • 设计模式

    • 初识设计模式
    • 创建型模式
    • 结构型模式
    • 行为模式
  • 数据结构

    • 时间轮
    • 堆、双向链表、环形队列
    • 队列:优先队列
    • 队列:延迟队列
  • 算法

    • 递归算法
    • 枚举算法
    • 动态规划
    • 回溯算法
    • 分治算法
    • 贪心算法
    • LRU和LFU
    • 一致性哈希

花开半夏,半夏花开
首页
  • Go语言基础

    • 数据类型
    • 反射
    • Go指针
  • Go语言进阶

    • go泛型
    • go条件编译
    • cgo教程
    • Go协程调度原理及GPM模型
    • Go内存管理
    • Go垃圾回收机制
    • Go语言内存对齐
  • Go语言实现原理

    • channel 实现原理
    • slice 实现原理
    • map 实现原理
    • sync.Mutex 实现原理
    • 乐观锁CAS 实现原理
    • singlefight 实现原理
  • gin框架

    • gin中间件原理
    • gin路由原理
  • gorm

    • GORM介绍和使用
    • GORM_CURD操作指南
  • go测试

    • benchmark基准测试
    • pprof 性能分析
  • python进阶

    • Numpy&Pandas
    • celery分布式任务队列
  • Django

    • Django 常见命令
    • middleware中间件
    • Django缓存系统
    • Django信号系统
    • Django REST Framework
  • Flask

    • Flask基础知识总结
    • Flask-SQLAlchemy
  • 爬虫

    • aiohttp
    • scrapy框架
  • Mysql

    • Mysql存储引擎和索引
    • MySQL主从复制
    • Mysql读写分离
    • 数据库分库分表
    • Mysql锁
    • Mysql事务和MVCC原理
    • 分库分表带来的读扩散问题
  • Redis

    • redis基础和数据类型
    • redis主从架构
    • redis哨兵架构
    • redis集群模式
    • 如何保证缓存和数据库双写一致
    • redis底层数据结构
    • redis分布式锁
  • Elasticsearch

    • es基本概念
    • es基础语法
    • es倒排索引
  • etcd

    • Go操作etcd
    • Raft原理
    • etcd分布式锁
  • kafka

    • 消息队列MQ总结
    • kafka 概述及原理
    • kafka 消费问题记录
    • 零拷贝技术
    • kafka分区规范
  • RabbitMQ

    • rabbitMQ基础
    • Go操作rabbitmq
  • RocketMQ

    • 可靠消息队列 rocketMQ
  • Http&Https

    • http&https
    • TCP和UDP
    • Ping 原理
  • RPC

    • RPC初识
    • grpc初识和实现
  • gRPC

    • grpc 初识
    • grpc 上下文 metadata
    • grpc 健康检查
    • grpc keepalive
    • grpc 命名解析
    • grpc 中间件&拦截器
    • grpc 负载均衡
    • grpc 身份认证
    • grpc 超时重试
    • grpc 链路追踪
    • grpc-gw将gRPC转RESTfu api
    • grpc-gw自定义选项
  • protobuf

    • protobuf 进阶
    • protobuf 编码原理
  • Docker

    • Docker基础
    • Docker常用命令
    • Dockerfile
    • Docker-Compose
    • Docker多阶段构建
    • Docker Config 教程
    • Docker Swarm 教程
    • Docker Stack 教程
    • Docker Buildx 教程
  • k8s

    • k8s 基础概念
    • k8s 集群架构
    • k8s 工作负载
    • Pod 网络
    • Service 网络
    • 外部接入网络
    • 一张图搞懂k8s各种pod
    • k8s 存储抽象
    • mac快速启动k8s
    • 自制申威架构k8s-reloader
  • go-kit

    • go-kit初识
    • go-kit启动http服务
    • go-kit集成gin启动服务
    • go-kit集成grpc和protobuf
    • go-kit中间件
    • go-kit服务注册发现与负载均衡
    • go-kit限流和熔断
    • go-kit链路追踪
    • go-kit集成Prometheus
  • 设计模式

    • 初识设计模式
    • 创建型模式
    • 结构型模式
    • 行为模式
  • 数据结构

    • 时间轮
    • 堆、双向链表、环形队列
    • 队列:优先队列
    • 队列:延迟队列
  • 算法

    • 递归算法
    • 枚举算法
    • 动态规划
    • 回溯算法
    • 分治算法
    • 贪心算法
    • LRU和LFU
    • 一致性哈希
  • Mysql

  • Redis

    • redis基础和数据类型
    • redis缓存穿透、缓存雪崩、缓存击穿
    • redis高阶使用
    • 布隆过滤器与缓存穿透
    • redis持久化存储
    • redis线程模型
    • redis过期策略
    • redis主从架构
    • redis哨兵架构
    • redis集群模式
      • 集群工作原理
      • 集群模式和高可用哨兵模式
        • 1. Redis Cluster
        • 2. replication + sentinel
      • 集群数据分布的算法
        • 1. hash算法
        • 2. 一致性Hash算法
        • 3. hash slot 算法
      • 集群高可用性与主备切换原理
    • redis高并发和高可用
    • 如何保证缓存和数据库双写一致
    • redis为什么那么快
    • redis分布式锁
    • redis事务和watch
    • redis 底层数据结构
  • elasticsearch

  • etcd

  • Database
  • Redis
bigox
2022-07-01
目录

redis集群模式

# 集群工作原理

  • 单机瓶颈: Redis在单机架构下的瓶颈:master节点的数据和slave节点的数据量一样,也就是master容纳多少,slave也只能容纳多少,如果需要放1T数据,在缓存中,那么就遇到的性能瓶颈了。

  • 集群模式: 支撑N个redis master node,每个master node都可以挂载多个slave node,读写分离的架构,对于每个master来说,写就写到master,然后读就从mater对应的slave去读,高可用,因为每个master都有salve节点,那么如果mater挂掉,redis cluster这套机制,就会自动将某个slave切换成master,redis cluster(多master + 读写分离 + 高可用),我们只要基于redis cluster去搭建redis集群即可,不需要手工去搭建replication复制+主从架构+读写分离+哨兵集群+高可用

# 集群模式和高可用哨兵模式

# 1. Redis Cluster

  • 是Redis的集群模式

    • 自动将数据进行分片,每个master上放一部分数据

    • 提供内置的高可用支持,部分master不可用时,还是可以继续工作的

  • 在redis cluster架构下,每个redis要放开两个端口号,比如一个是6379,另外一个就是加10000的端口号,比如16379端口号是用来进行节点间通信的,也就是cluster bus的东西,集群总线。cluster bus的通信,用来进行故障检测,配置更新,故障转移授权

# 2. replication + sentinel

高可用模式

  • 如果你的数据量很少,主要是承载高并发高性能的场景,比如你的缓存一般就几个G,单机足够了,replication,一个mater,多个slave,要几个slave跟你的要求的读吞吐量有关系,然后自己搭建一个sentinal集群,去保证redis主从架构的高可用性,就可以了

  • redis cluster,主要是针对海量数据+高并发+高可用的场景,海量数据,如果你的数据量很大,那么建议就用redis cluster

# 集群数据分布的算法

  1. hash算法
  2. hash一致性算法
  3. redis cluster,hash slot 算法

# 1. hash算法

  • 假设有4个redis节点,分别是redis0,redis1,redis2,redis3;有20个数据,这20个数据需要尽可能均匀地存储在这4个redis节点上。传统的做法是:将这20个数据(key)进行hash运算(如果是string类型,可以直接哈希。如果是文件,可以对唯一的文件名进行哈希),hash后的值和4(节点数量)进行取余运算,算出来是什么结果就落在哪个节点上。比如经过hash取余运算后结果为0,就存储在redis0节点;结果为1,存储在redis1节点;结果为2,存储在redis2节点,以此类推......

  • 读取数据的时候,根据数据(key)进行hash运算,然后和节点数进行取余,就能得出数据存储在哪个节点了,进而读出数据。

    这种算法能够使各个redis节点比较均匀地分担压力,和HashMap和类似。

  • 缺点:

    • 如果增加redis节点或者删除redis节点(这种情形很常见),因为节点数量改变了,所以会导致数据(key)进行hash后和节点数取余的结果发生改变,不能定位到之前的redis节点,无法从缓存中读取数据,这时就会直接从DB中读取,会造成redis穿透,甚至系统奔溃。一般在redis节点改变的时候,会在极短的时间内将缓存中的数据在redis节点之间进行重分配。
    • 数据命中:即节点数量改变后不受影响的数据(少部分数据在节点数量改变前和改变后key的hash值取余后,值没发生变化)。这种算法数据命中率很低。

# 2. 一致性Hash算法

首先对节点进行哈希计算,哈希值通常在 2^32-1 范围内。然后将 2^32-1 这个区间首尾连接抽象成一个环并将节点的哈希值映射到环上,当我们要查询 key 的目标节点时,同样的我们对 key 进行哈希计算,然后顺时针查找到的第一个节点就是目标节点。

  • 根据原理我们分析一下节点添加和删除对数据范围的影响。
  1. 节点添加

    image-20220616150759729

    只会影响新增节点与前一个节点(新增节点逆时针查找的第一个节点)之间的数据。

  2. 节点删除

    image-20220616150825802

    只会影响删除节点与前一个节点(删除节点逆时针查找的第一个节点)之间的数据。

  • 这样就完了吗?还没有,试想一下假如环上的节点数量非常少,那么非常有可能造成数据分布不平衡,本质上是环上的区间分布粒度太粗。

  • 怎么解决呢?不是粒度太粗吗?那就加入更多的节点,这就引出了一致性哈希的虚拟节点概念,虚拟节点的作用在于让环上的节点区间分布粒度变细。

  • 一个真实节点对应多个虚拟节点,将虚拟节点的哈希值映射到环上,查询 key 的目标节点我们先查询虚拟节点再找到真实节点即可。

image-20220616102928968

  • 解决了缓存热点问题: 引入了虚拟环(虚拟节点)的概念,目的是为了让每个master都做了均匀分布,这样每个区间内的数据都能够 均衡的分布到不同的节点中,而不是按照顺时针去查找

# 3. hash slot 算法

  • Redis Cluster有固定的16384(2^14)个Hash slot,对每个key计算CRC16值,然后对16384取模,可以获取key对应的hash slot,redis cluster中每个master都会持有部分slot,比如有3个master,那么可能每个master持有5000多个hash slot
  • hash slot让node的增加和移除很简单,增加一个master,就将其他master的hash slot移动部分过去,减少一个master,就将它的hash slot移动到其他master上去,移动hash slot的成本是非常低的,客户端的api,可以对指定的数据,让他们走同一个hash slot,通过hash tag来实现
  • 如果有一台master宕机了,其它节点上的缓存几乎不受影响,因为它取模运算是根据 Hash slot来的,也就是 16384,而不是根据Redis的机器数。

# 集群高可用性与主备切换原理

  1. 判断节点宕机

    • 如果一个节点认为另外一个节点宕机,那么就是pfail,主观宕机,如果多个节点都认为另外一个节点宕机了,那么就是fail,客观宕机,跟哨兵的原理几乎一样,sdown,odown,在cluster-node-timeout内,某个节点一直没有返回pong,那么就被认为pfail,如果一个节点认为某个节点pfail了,那么会在gossip ping消息中,ping给其他节点,如果超过半数的节点都认为pfail了,那么就会变成fail
  2. 从节点过滤

    • 对宕机的master node,从其所有的slave node中,选择一个切换成master node,检查每个slave node与master node断开连接的时间,如果超过了cluster-node-timeout * cluster-slave-validity-factor,那么就没有资格切换成master,这个也是跟哨兵是一样的,从节点超时过滤的步骤
  3. 从节点选举

    • 哨兵:对所有从节点进行排序,slave priority,offset,run id,每个从节点,都根据自己对master复制数据的offset,来设置一个选举时间,offset越大(复制数据越多)的从节点,选举时间越靠前,优先进行选举,所有的master node开始slave选举投票,给要进行选举的slave进行投票,如果大部分master node(N/2 + 1)都投票给了某个从节点,那么选举通过,那个从节点可以切换成master,从节点执行主备切换,从节点切换为主节点
  4. 与哨兵比较

    • 整个流程跟哨兵相比,非常类似,所以说,redis cluster功能强大,直接集成了replication和sentinal的功能
#数据库#
上次更新: 2023/04/16, 18:35:33
redis哨兵架构
redis高并发和高可用

← redis哨兵架构 redis高并发和高可用→

最近更新
01
go与http代理
05-24
02
自制申威架构k8s-reloader
12-06
03
Docker Buildx 教程
12-01
更多文章>
Theme by Vdoing | Copyright © 2020-2024 小刘扎扎 | MIT License
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式