刘沙河 刘沙河
首页
  • Go语言基础

    • 数据类型
    • 反射
    • Go指针
  • Go语言进阶

    • go泛型
    • go条件编译
    • cgo教程
    • Go协程调度原理及GPM模型
    • Go内存管理
    • Go垃圾回收机制
    • Go语言内存对齐
  • Go语言实现原理

    • channel 实现原理
    • slice 实现原理
    • map 实现原理
    • sync.Mutex 实现原理
    • 乐观锁CAS 实现原理
    • singlefight 实现原理
  • gin框架

    • gin中间件原理
    • gin路由原理
  • gorm

    • GORM介绍和使用
    • GORM_CURD操作指南
  • go测试

    • benchmark基准测试
    • pprof 性能分析
  • python进阶

    • Numpy&Pandas
    • celery分布式任务队列
  • Django

    • Django 常见命令
    • middleware中间件
    • Django缓存系统
    • Django信号系统
    • Django REST Framework
  • Flask

    • Flask基础知识总结
    • Flask-SQLAlchemy
  • 爬虫

    • aiohttp
    • scrapy框架
  • Mysql

    • Mysql存储引擎和索引
    • MySQL主从复制
    • Mysql读写分离
    • 数据库分库分表
    • Mysql锁
    • Mysql事务和MVCC原理
    • 分库分表带来的读扩散问题
  • Redis

    • redis基础和数据类型
    • redis主从架构
    • redis哨兵架构
    • redis集群模式
    • 如何保证缓存和数据库双写一致
    • redis底层数据结构
    • redis分布式锁
  • Elasticsearch

    • es基本概念
    • es基础语法
    • es倒排索引
  • etcd

    • Go操作etcd
    • Raft原理
    • etcd分布式锁
  • kafka

    • 消息队列MQ总结
    • kafka 概述及原理
    • kafka 消费问题记录
    • 零拷贝技术
    • kafka分区规范
  • RabbitMQ

    • rabbitMQ基础
    • Go操作rabbitmq
  • RocketMQ

    • 可靠消息队列 rocketMQ
  • Http&Https

    • http&https
    • TCP和UDP
    • Ping 原理
  • RPC

    • RPC初识
    • grpc初识和实现
  • gRPC

    • grpc 初识
    • grpc 上下文 metadata
    • grpc 健康检查
    • grpc keepalive
    • grpc 命名解析
    • grpc 中间件&拦截器
    • grpc 负载均衡
    • grpc 身份认证
    • grpc 超时重试
    • grpc 链路追踪
    • grpc-gw将gRPC转RESTfu api
    • grpc-gw自定义选项
  • protobuf

    • protobuf 进阶
    • protobuf 编码原理
  • Docker

    • Docker基础
    • Docker常用命令
    • Dockerfile
    • Docker-Compose
    • Docker多阶段构建
    • Docker Config 教程
    • Docker Swarm 教程
    • Docker Stack 教程
    • Docker Buildx 教程
  • k8s

    • k8s 基础概念
    • k8s 集群架构
    • k8s 工作负载
    • Pod 网络
    • Service 网络
    • 外部接入网络
    • 一张图搞懂k8s各种pod
    • k8s 存储抽象
    • mac快速启动k8s
    • 自制申威架构k8s-reloader
  • go-kit

    • go-kit初识
    • go-kit启动http服务
    • go-kit集成gin启动服务
    • go-kit集成grpc和protobuf
    • go-kit中间件
    • go-kit服务注册发现与负载均衡
    • go-kit限流和熔断
    • go-kit链路追踪
    • go-kit集成Prometheus
  • 设计模式

    • 初识设计模式
    • 创建型模式
    • 结构型模式
    • 行为模式
  • 数据结构

    • 时间轮
    • 堆、双向链表、环形队列
    • 队列:优先队列
    • 队列:延迟队列
  • 算法

    • 递归算法
    • 枚举算法
    • 动态规划
    • 回溯算法
    • 分治算法
    • 贪心算法
    • LRU和LFU
    • 一致性哈希

花开半夏,半夏花开
首页
  • Go语言基础

    • 数据类型
    • 反射
    • Go指针
  • Go语言进阶

    • go泛型
    • go条件编译
    • cgo教程
    • Go协程调度原理及GPM模型
    • Go内存管理
    • Go垃圾回收机制
    • Go语言内存对齐
  • Go语言实现原理

    • channel 实现原理
    • slice 实现原理
    • map 实现原理
    • sync.Mutex 实现原理
    • 乐观锁CAS 实现原理
    • singlefight 实现原理
  • gin框架

    • gin中间件原理
    • gin路由原理
  • gorm

    • GORM介绍和使用
    • GORM_CURD操作指南
  • go测试

    • benchmark基准测试
    • pprof 性能分析
  • python进阶

    • Numpy&Pandas
    • celery分布式任务队列
  • Django

    • Django 常见命令
    • middleware中间件
    • Django缓存系统
    • Django信号系统
    • Django REST Framework
  • Flask

    • Flask基础知识总结
    • Flask-SQLAlchemy
  • 爬虫

    • aiohttp
    • scrapy框架
  • Mysql

    • Mysql存储引擎和索引
    • MySQL主从复制
    • Mysql读写分离
    • 数据库分库分表
    • Mysql锁
    • Mysql事务和MVCC原理
    • 分库分表带来的读扩散问题
  • Redis

    • redis基础和数据类型
    • redis主从架构
    • redis哨兵架构
    • redis集群模式
    • 如何保证缓存和数据库双写一致
    • redis底层数据结构
    • redis分布式锁
  • Elasticsearch

    • es基本概念
    • es基础语法
    • es倒排索引
  • etcd

    • Go操作etcd
    • Raft原理
    • etcd分布式锁
  • kafka

    • 消息队列MQ总结
    • kafka 概述及原理
    • kafka 消费问题记录
    • 零拷贝技术
    • kafka分区规范
  • RabbitMQ

    • rabbitMQ基础
    • Go操作rabbitmq
  • RocketMQ

    • 可靠消息队列 rocketMQ
  • Http&Https

    • http&https
    • TCP和UDP
    • Ping 原理
  • RPC

    • RPC初识
    • grpc初识和实现
  • gRPC

    • grpc 初识
    • grpc 上下文 metadata
    • grpc 健康检查
    • grpc keepalive
    • grpc 命名解析
    • grpc 中间件&拦截器
    • grpc 负载均衡
    • grpc 身份认证
    • grpc 超时重试
    • grpc 链路追踪
    • grpc-gw将gRPC转RESTfu api
    • grpc-gw自定义选项
  • protobuf

    • protobuf 进阶
    • protobuf 编码原理
  • Docker

    • Docker基础
    • Docker常用命令
    • Dockerfile
    • Docker-Compose
    • Docker多阶段构建
    • Docker Config 教程
    • Docker Swarm 教程
    • Docker Stack 教程
    • Docker Buildx 教程
  • k8s

    • k8s 基础概念
    • k8s 集群架构
    • k8s 工作负载
    • Pod 网络
    • Service 网络
    • 外部接入网络
    • 一张图搞懂k8s各种pod
    • k8s 存储抽象
    • mac快速启动k8s
    • 自制申威架构k8s-reloader
  • go-kit

    • go-kit初识
    • go-kit启动http服务
    • go-kit集成gin启动服务
    • go-kit集成grpc和protobuf
    • go-kit中间件
    • go-kit服务注册发现与负载均衡
    • go-kit限流和熔断
    • go-kit链路追踪
    • go-kit集成Prometheus
  • 设计模式

    • 初识设计模式
    • 创建型模式
    • 结构型模式
    • 行为模式
  • 数据结构

    • 时间轮
    • 堆、双向链表、环形队列
    • 队列:优先队列
    • 队列:延迟队列
  • 算法

    • 递归算法
    • 枚举算法
    • 动态规划
    • 回溯算法
    • 分治算法
    • 贪心算法
    • LRU和LFU
    • 一致性哈希
  • go语言基础

  • go语言进阶

    • go 泛型
    • go条件编译
    • 分布式从ACID、CAP、BASE的理论推进
    • go链接参数 ldflags
    • TCP网络连接以及TIME_WAIT的意义
    • Go异常处理
    • Go性能调优 pprof
      • 采集性能数据
      • 工具型应用
        • 1. CPU性能分析
        • 2. 内存性能优化
      • 服务型应用
      • go tool pprof命令
      • 具体示例
        • 1. 命令行交互界面
        • 2. 图形化
      • go-torch和火焰图
        • 1. 安装go-torch
        • 2. 安装 FlameGraph
        • 3. 压测工具wrk
        • 4. 使用go-torch
      • pprof与性能测试结合
    • Go语言设计模式
    • Go 切片的截取
    • Go runtime详解
    • go执行外部命令
    • 标准库container三剑客:head、list、ring
    • go与http代理
    • Go内存管理
    • Go垃圾回收机制
    • Go语言中的并发编程
    • Go协程调度原理及GPM模型
    • Go中逃逸现象, 变量+堆栈
    • Go面向对象的思维理解interface
    • Go中的Defer
    • Go和Python中的深浅拷贝
    • Go语言内存对齐
    • 流和IO多路复用
    • 单点Server的N种并发模型汇总
    • 控制goroutine的数量
    • 配置管理库—Viper
    • 高性能日志库zap
    • Go中的Mutex和RWMutex.md
    • sqlx的使用
    • 分布式id 库snowflake和sonyflake
    • sync.Pool 复用对象
    • sync.Once 单例模式
    • sync.Cond 条件变量
    • unsafe.Pointer 和 uintptr
    • go 信号量
    • go语言代码优化技巧
    • go 接口型函数
    • 位运算
    • cgo教程
    • go调用lib和so动态库
  • go语言实现原理

  • gin框架

  • gorm

  • go测试

  • Go语言
  • go语言进阶
bigox
2022-04-27
目录

Go性能调优 pprof

  • Go语言项目中的性能优化主要有以下几个方面:

    • CPU profile:报告程序的 CPU 使用情况,按照一定频率去采集应用程序在 CPU 和寄存器上面的数据

    • Memory Profile(Heap Profile):报告程序的内存使用情况

    • Block Profiling:报告 goroutines 不在运行状态的情况,可以用来分析和查找死锁等性能瓶颈

    • Goroutine Profiling:报告 goroutines 的使用情况,有哪些 goroutine,它们的调用关系是怎样的

# 采集性能数据

Go语言内置了获取程序的运行数据的工具,包括以下两个标准库:

  • runtime/pprof:采集工具型应用运行数据进行分析
  • net/http/pprof:采集服务型应用运行时数据进行分析

pprof开启后,每隔一段时间(10ms)就会收集下当前的堆栈信息,获取各个函数占用的CPU以及内存资源;最后通过对这些采样数据进行分析,形成一个性能分析报告。

注意,我们只应该在性能测试的时候才在代码中引入pprof。

# 工具型应用

如果你的应用程序是运行一段时间就结束退出类型。那么最好的办法是在应用退出的时候把 profiling 的报告保存到文件中,进行分析。对于这种情况,可以使用runtime/pprof库。 首先在代码中导入runtime/pprof工具:

import "runtime/pprof"
1

# 1. CPU性能分析

开启CPU性能分析:

pprof.StartCPUProfile(w io.Writer)
1

停止CPU性能分析:

pprof.StopCPUProfile()
1

应用执行结束后,就会生成一个文件,保存了我们的 CPU profiling 数据。得到采样数据之后,使用go tool pprof工具进行CPU性能分析。

# 2. 内存性能优化

记录程序的堆栈信息

pprof.WriteHeapProfile(w io.Writer)
1

得到采样数据之后,使用go tool pprof工具进行内存性能分析。

go tool pprof默认是使用-inuse_space进行统计,还可以使用-inuse-objects查看分配对象的数量。

# 服务型应用

如果你的应用程序是一直运行的,比如 web 应用,那么可以使用net/http/pprof库,它能够在提供 HTTP 服务进行分析。

如果使用了默认的http.DefaultServeMux(通常是代码直接使用 http.ListenAndServe(“0.0.0.0:8000”, nil)),只需要在你的web server端代码中按如下方式导入net/http/pprof

import _ "net/http/pprof"
1

如果你使用自定义的 Mux,则需要手动注册一些路由规则:

r.HandleFunc("/debug/pprof/", pprof.Index)
r.HandleFunc("/debug/pprof/cmdline", pprof.Cmdline)
r.HandleFunc("/debug/pprof/profile", pprof.Profile)
r.HandleFunc("/debug/pprof/symbol", pprof.Symbol)
r.HandleFunc("/debug/pprof/trace", pprof.Trace)
1
2
3
4
5

如果你使用的是gin框架,那么推荐使用github.com/gin-contrib/pprof (opens new window),在代码中通过以下命令注册pprof相关路由。

pprof.Register(router)
1

不管哪种方式,你的 HTTP 服务都会多出/debug/pprof endpoint,访问它会得到类似下面的内容:

debug/pprof

这个路径下还有几个子页面:

  • /debug/pprof/profile:访问这个链接会自动进行 CPU profiling,持续 30s,并生成一个文件供下载
  • /debug/pprof/heap: Memory Profiling 的路径,访问这个链接会得到一个内存 Profiling 结果的文件
  • /debug/pprof/block:block Profiling 的路径
  • /debug/pprof/goroutines:运行的 goroutines 列表,以及调用关系

# go tool pprof命令

不管是工具型应用还是服务型应用,我们使用相应的pprof库获取数据之后,下一步的都要对这些数据进行分析,我们可以使用go tool pprof命令行工具。

go tool pprof最简单的使用方式为:

go tool pprof [binary] [source]
1

其中:

  • binary 是应用的二进制文件,用来解析各种符号;
  • source 表示 profile 数据的来源,可以是本地的文件,也可以是 http 地址。

注意事项: 获取的 Profiling 数据是动态的,要想获得有效的数据,请保证应用处于较大的负载(比如正在生成中运行的服务,或者通过其他工具模拟访问压力)。否则如果应用处于空闲状态,得到的结果可能没有任何意义。

# 具体示例

首先我们来写一段有问题的代码:

// runtime_pprof/main.go
package main

import (
	"flag"
	"fmt"
	"os"
	"runtime/pprof"
	"time"
)

// 一段有问题的代码
func logicCode() {
	var c chan int
	for {
		select {
		case v := <-c:
			fmt.Printf("recv from chan, value:%v\n", v)
		default:

		}
	}
}

func main() {
	var isCPUPprof bool
	var isMemPprof bool

	flag.BoolVar(&isCPUPprof, "cpu", false, "turn cpu pprof on")
	flag.BoolVar(&isMemPprof, "mem", false, "turn mem pprof on")
	flag.Parse()

	if isCPUPprof {
		file, err := os.Create("./cpu.pprof")
		if err != nil {
			fmt.Printf("create cpu pprof failed, err:%v\n", err)
			return
		}
		pprof.StartCPUProfile(file)
		defer pprof.StopCPUProfile()
	}
	for i := 0; i < 8; i++ {
		go logicCode()
	}
	time.Sleep(20 * time.Second)
	if isMemPprof {
		file, err := os.Create("./mem.pprof")
		if err != nil {
			fmt.Printf("create mem pprof failed, err:%v\n", err)
			return
		}
		pprof.WriteHeapProfile(file)
		file.Close()
	}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

通过flag我们可以在命令行控制是否开启CPU和Mem的性能分析。 将上面的代码保存并编译成runtime_pprof可执行文件,执行时加上-cpu命令行参数如下:

./runtime_pprof -cpu
1

等待30秒后会在当前目录下生成一个cpu.pprof文件。

# 1. 命令行交互界面

我们使用go工具链里的pprof来分析一下。

go tool pprof cpu.pprof
1

执行上面的代码会进入交互界面如下:

runtime_pprof $ go tool pprof cpu.pprof
Type: cpu
Time: Jun 28, 2019 at 11:28am (CST)
Duration: 20.13s, Total samples = 1.91mins (568.60%)
Entering interactive mode (type "help" for commands, "o" for options)
(pprof)  
1
2
3
4
5
6

我们可以在交互界面输入top3来查看程序中占用CPU前3位的函数:

(pprof) top3
Showing nodes accounting for 100.37s, 87.68% of 114.47s total
Dropped 17 nodes (cum <= 0.57s)
Showing top 3 nodes out of 4
      flat  flat%   sum%        cum   cum%
    42.52s 37.15% 37.15%     91.73s 80.13%  runtime.selectnbrecv
    35.21s 30.76% 67.90%     39.49s 34.50%  runtime.chanrecv
    22.64s 19.78% 87.68%    114.37s 99.91%  main.logicCode
1
2
3
4
5
6
7
8

其中:

  • flat:当前函数占用CPU的耗时
  • flat::当前函数占用CPU的耗时百分比
  • sun%:函数占用CPU的耗时累计百分比
  • cum:当前函数加上调用当前函数的函数占用CPU的总耗时
  • cum%:当前函数加上调用当前函数的函数占用CPU的总耗时百分比
  • 最后一列:函数名称

在大多数的情况下,我们可以通过分析这五列得出一个应用程序的运行情况,并对程序进行优化。

我们还可以使用list 函数名命令查看具体的函数分析,例如执行list logicCode查看我们编写的函数的详细分析。

(pprof) list logicCode
Total: 1.91mins
ROUTINE ================ main.logicCode in .../runtime_pprof/main.go
    22.64s   1.91mins (flat, cum) 99.91% of Total
         .          .     12:func logicCode() {
         .          .     13:   var c chan int
         .          .     14:   for {
         .          .     15:           select {
         .          .     16:           case v := <-c:
    22.64s   1.91mins     17:                   fmt.Printf("recv from chan, value:%v\n", v)
         .          .     18:           default:
         .          .     19:
         .          .     20:           }
         .          .     21:   }
         .          .     22:}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

通过分析发现大部分CPU资源被17行占用,我们分析出select语句中的default没有内容会导致上面的case v:=<-c:一直执行。我们在default分支添加一行time.Sleep(time.Second)即可。

# 2. 图形化

或者可以直接输入web,通过svg图的方式查看程序中详细的CPU占用情况。 想要查看图形化的界面首先需要安装graphviz (opens new window)图形化工具。

Mac:

brew install graphviz
1

Windows: 下载graphviz (opens new window) 将graphviz安装目录下的bin文件夹添加到Path环境变量中。 在终端输入dot -version查看是否安装成功。

CPU占比图

关于图形的说明: 每个框代表一个函数,理论上框的越大表示占用的CPU资源越多。 方框之间的线条代表函数之间的调用关系。 线条上的数字表示函数调用的次数。 方框中的第一行数字表示当前函数占用CPU的百分比,第二行数字表示当前函数累计占用CPU的百分比。

除了分析CPU性能数据,pprof也支持分析内存性能数据。比如,使用下面的命令分析http服务的heap性能数据,查看当前程序的内存占用以及热点内存对象使用的情况。

# 查看内存占用数据
go tool pprof -inuse_space http://127.0.0.1:8080/debug/pprof/heap
go tool pprof -inuse_objects http://127.0.0.1:8080/debug/pprof/heap
# 查看临时内存分配数据
go tool pprof -alloc_space http://127.0.0.1:8080/debug/pprof/heap
go tool pprof -alloc_objects http://127.0.0.1:8080/debug/pprof/heap
1
2
3
4
5
6

# go-torch和火焰图

火焰图(Flame Graph)是 Bredan Gregg 创建的一种性能分析图表,因为它的样子近似 🔥而得名。上面的 profiling 结果也转换成火焰图,如果对火焰图比较了解可以手动来操作,不过这里我们要介绍一个工具:go-torch。这是 uber 开源的一个工具,可以直接读取 golang profiling 数据,并生成一个火焰图的 svg 文件。

# 1. 安装go-torch

   go get -v github.com/uber/go-torch
1

火焰图 svg 文件可以通过浏览器打开,它对于调用图的最优点是它是动态的:可以通过点击每个方块来 zoom in 分析它上面的内容。

火焰图的调用顺序从下到上,每个方块代表一个函数,它上面一层表示这个函数会调用哪些函数,方块的大小代表了占用 CPU 使用的长短。火焰图的配色并没有特殊的意义,默认的红、黄配色是为了更像火焰而已。

go-torch 工具的使用非常简单,没有任何参数的话,它会尝试从http://localhost:8080/debug/pprof/profile获取 profiling 数据。它有三个常用的参数可以调整:

  • -u –url:要访问的 URL,这里只是主机和端口部分
  • -s –suffix:pprof profile 的路径,默认为 /debug/pprof/profile
  • –seconds:要执行 profiling 的时间长度,默认为 30s

# 2. 安装 FlameGraph

要生成火焰图,需要事先安装 FlameGraph工具,这个工具的安装很简单(需要perl环境支持),只要把对应的可执行文件加入到环境变量中即可。

  1. 下载安装perl:https://www.perl.org/get.html
  2. 下载FlameGraph:git clone https://github.com/brendangregg/FlameGraph.git
  3. 将FlameGraph目录加入到操作系统的环境变量中。
  4. Windows平台的同学,需要把go-torch/render/flamegraph.go文件中的GenerateFlameGraph按如下方式修改,然后在go-torch目录下执行go install即可。
// GenerateFlameGraph runs the flamegraph script to generate a flame graph SVG. func GenerateFlameGraph(graphInput []byte, args ...string) ([]byte, error) {
flameGraph := findInPath(flameGraphScripts)
if flameGraph == "" {
	return nil, errNoPerlScript
}
if runtime.GOOS == "windows" {
	return runScript("perl", append([]string{flameGraph}, args...), graphInput)
}
  return runScript(flameGraph, args, graphInput)
}
1
2
3
4
5
6
7
8
9
10

# 3. 压测工具wrk

推荐使用https://github.com/wg/wrk 或 https://github.com/adjust/go-wrk

# 4. 使用go-torch

使用wrk进行压测:

go-wrk -n 50000 http://127.0.0.1:8080/book/list
1

在上面压测进行的同时,打开另一个终端执行:

go-torch -u http://127.0.0.1:8080 -t 30
1

30秒之后终端会初夏如下提示:Writing svg to torch.svg

然后我们使用浏览器打开torch.svg就能看到如下火焰图了。火焰图

火焰图的y轴表示cpu调用方法的先后,x轴表示在每个采样调用时间内,方法所占的时间百分比,越宽代表占据cpu时间越多。通过火焰图我们就可以更清楚的找出耗时长的函数调用,然后不断的修正代码,重新采样,不断优化。

此外还可以借助火焰图分析内存性能数据:

go-torch -inuse_space http://127.0.0.1:8080/debug/pprof/heap
go-torch -inuse_objects http://127.0.0.1:8080/debug/pprof/heap
go-torch -alloc_space http://127.0.0.1:8080/debug/pprof/heap
go-torch -alloc_objects http://127.0.0.1:8080/debug/pprof/heap
1
2
3
4

# pprof与性能测试结合

go test命令有两个参数和 pprof 相关,它们分别指定生成的 CPU 和 Memory profiling 保存的文件:

  • -cpuprofile:cpu profiling 数据要保存的文件地址
  • -memprofile:memory profiling 数据要报文的文件地址

我们还可以选择将pprof与性能测试相结合,比如:

比如下面执行测试的同时,也会执行 CPU profiling,并把结果保存在 cpu.prof 文件中:

go test -bench . -cpuprofile=cpu.prof
1

比如下面执行测试的同时,也会执行 Mem profiling,并把结果保存在 cpu.prof 文件中:

go test -bench . -memprofile=./mem.prof
1

需要注意的是,Profiling 一般和性能测试一起使用,这个原因在前文也提到过,只有应用在负载高的情况下 Profiling 才有意义。

#Go
上次更新: 2023/05/04, 11:49:33
Go异常处理
Go语言设计模式

← Go异常处理 Go语言设计模式→

最近更新
01
go与http代理
05-24
02
自制申威架构k8s-reloader
12-06
03
Docker Buildx 教程
12-01
更多文章>
Theme by Vdoing | Copyright © 2020-2024 小刘扎扎 | MIT License
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式