刘沙河 刘沙河
首页
  • Go语言基础

    • 数据类型
    • 反射
    • Go指针
  • Go语言进阶

    • go泛型
    • go条件编译
    • cgo教程
    • Go协程调度原理及GPM模型
    • Go内存管理
    • Go垃圾回收机制
    • Go语言内存对齐
  • Go语言实现原理

    • channel 实现原理
    • slice 实现原理
    • map 实现原理
    • sync.Mutex 实现原理
    • 乐观锁CAS 实现原理
    • singlefight 实现原理
  • gin框架

    • gin中间件原理
    • gin路由原理
  • gorm

    • GORM介绍和使用
    • GORM_CURD操作指南
  • go测试

    • benchmark基准测试
    • pprof 性能分析
  • python进阶

    • Numpy&Pandas
    • celery分布式任务队列
  • Django

    • Django 常见命令
    • middleware中间件
    • Django缓存系统
    • Django信号系统
    • Django REST Framework
  • Flask

    • Flask基础知识总结
    • Flask-SQLAlchemy
  • 爬虫

    • aiohttp
    • scrapy框架
  • Mysql

    • Mysql存储引擎和索引
    • MySQL主从复制
    • Mysql读写分离
    • 数据库分库分表
    • Mysql锁
    • Mysql事务和MVCC原理
    • 分库分表带来的读扩散问题
  • Redis

    • redis基础和数据类型
    • redis主从架构
    • redis哨兵架构
    • redis集群模式
    • 如何保证缓存和数据库双写一致
    • redis底层数据结构
    • redis分布式锁
  • Elasticsearch

    • es基本概念
    • es基础语法
    • es倒排索引
  • etcd

    • Go操作etcd
    • Raft原理
    • etcd分布式锁
  • kafka

    • 消息队列MQ总结
    • kafka 概述及原理
    • kafka 消费问题记录
    • 零拷贝技术
    • kafka分区规范
  • RabbitMQ

    • rabbitMQ基础
    • Go操作rabbitmq
  • RocketMQ

    • 可靠消息队列 rocketMQ
  • Http&Https

    • http&https
    • TCP和UDP
    • Ping 原理
  • RPC

    • RPC初识
    • grpc初识和实现
  • gRPC

    • grpc 初识
    • grpc 上下文 metadata
    • grpc 健康检查
    • grpc keepalive
    • grpc 命名解析
    • grpc 中间件&拦截器
    • grpc 负载均衡
    • grpc 身份认证
    • grpc 超时重试
    • grpc 链路追踪
    • grpc-gw将gRPC转RESTfu api
    • grpc-gw自定义选项
  • protobuf

    • protobuf 进阶
    • protobuf 编码原理
  • Docker

    • Docker基础
    • Docker常用命令
    • Dockerfile
    • Docker-Compose
    • Docker多阶段构建
    • Docker Config 教程
    • Docker Swarm 教程
    • Docker Stack 教程
    • Docker Buildx 教程
  • k8s

    • k8s 基础概念
    • k8s 集群架构
    • k8s 工作负载
    • Pod 网络
    • Service 网络
    • 外部接入网络
    • 一张图搞懂k8s各种pod
    • k8s 存储抽象
    • mac快速启动k8s
    • 自制申威架构k8s-reloader
  • go-kit

    • go-kit初识
    • go-kit启动http服务
    • go-kit集成gin启动服务
    • go-kit集成grpc和protobuf
    • go-kit中间件
    • go-kit服务注册发现与负载均衡
    • go-kit限流和熔断
    • go-kit链路追踪
    • go-kit集成Prometheus
  • 设计模式

    • 初识设计模式
    • 创建型模式
    • 结构型模式
    • 行为模式
  • 数据结构

    • 时间轮
    • 堆、双向链表、环形队列
    • 队列:优先队列
    • 队列:延迟队列
  • 算法

    • 递归算法
    • 枚举算法
    • 动态规划
    • 回溯算法
    • 分治算法
    • 贪心算法
    • LRU和LFU
    • 一致性哈希

花开半夏,半夏花开
首页
  • Go语言基础

    • 数据类型
    • 反射
    • Go指针
  • Go语言进阶

    • go泛型
    • go条件编译
    • cgo教程
    • Go协程调度原理及GPM模型
    • Go内存管理
    • Go垃圾回收机制
    • Go语言内存对齐
  • Go语言实现原理

    • channel 实现原理
    • slice 实现原理
    • map 实现原理
    • sync.Mutex 实现原理
    • 乐观锁CAS 实现原理
    • singlefight 实现原理
  • gin框架

    • gin中间件原理
    • gin路由原理
  • gorm

    • GORM介绍和使用
    • GORM_CURD操作指南
  • go测试

    • benchmark基准测试
    • pprof 性能分析
  • python进阶

    • Numpy&Pandas
    • celery分布式任务队列
  • Django

    • Django 常见命令
    • middleware中间件
    • Django缓存系统
    • Django信号系统
    • Django REST Framework
  • Flask

    • Flask基础知识总结
    • Flask-SQLAlchemy
  • 爬虫

    • aiohttp
    • scrapy框架
  • Mysql

    • Mysql存储引擎和索引
    • MySQL主从复制
    • Mysql读写分离
    • 数据库分库分表
    • Mysql锁
    • Mysql事务和MVCC原理
    • 分库分表带来的读扩散问题
  • Redis

    • redis基础和数据类型
    • redis主从架构
    • redis哨兵架构
    • redis集群模式
    • 如何保证缓存和数据库双写一致
    • redis底层数据结构
    • redis分布式锁
  • Elasticsearch

    • es基本概念
    • es基础语法
    • es倒排索引
  • etcd

    • Go操作etcd
    • Raft原理
    • etcd分布式锁
  • kafka

    • 消息队列MQ总结
    • kafka 概述及原理
    • kafka 消费问题记录
    • 零拷贝技术
    • kafka分区规范
  • RabbitMQ

    • rabbitMQ基础
    • Go操作rabbitmq
  • RocketMQ

    • 可靠消息队列 rocketMQ
  • Http&Https

    • http&https
    • TCP和UDP
    • Ping 原理
  • RPC

    • RPC初识
    • grpc初识和实现
  • gRPC

    • grpc 初识
    • grpc 上下文 metadata
    • grpc 健康检查
    • grpc keepalive
    • grpc 命名解析
    • grpc 中间件&拦截器
    • grpc 负载均衡
    • grpc 身份认证
    • grpc 超时重试
    • grpc 链路追踪
    • grpc-gw将gRPC转RESTfu api
    • grpc-gw自定义选项
  • protobuf

    • protobuf 进阶
    • protobuf 编码原理
  • Docker

    • Docker基础
    • Docker常用命令
    • Dockerfile
    • Docker-Compose
    • Docker多阶段构建
    • Docker Config 教程
    • Docker Swarm 教程
    • Docker Stack 教程
    • Docker Buildx 教程
  • k8s

    • k8s 基础概念
    • k8s 集群架构
    • k8s 工作负载
    • Pod 网络
    • Service 网络
    • 外部接入网络
    • 一张图搞懂k8s各种pod
    • k8s 存储抽象
    • mac快速启动k8s
    • 自制申威架构k8s-reloader
  • go-kit

    • go-kit初识
    • go-kit启动http服务
    • go-kit集成gin启动服务
    • go-kit集成grpc和protobuf
    • go-kit中间件
    • go-kit服务注册发现与负载均衡
    • go-kit限流和熔断
    • go-kit链路追踪
    • go-kit集成Prometheus
  • 设计模式

    • 初识设计模式
    • 创建型模式
    • 结构型模式
    • 行为模式
  • 数据结构

    • 时间轮
    • 堆、双向链表、环形队列
    • 队列:优先队列
    • 队列:延迟队列
  • 算法

    • 递归算法
    • 枚举算法
    • 动态规划
    • 回溯算法
    • 分治算法
    • 贪心算法
    • LRU和LFU
    • 一致性哈希
  • go语言基础

  • go语言进阶

    • go 泛型
    • go条件编译
    • 分布式从ACID、CAP、BASE的理论推进
    • go链接参数 ldflags
    • TCP网络连接以及TIME_WAIT的意义
    • Go异常处理
    • Go性能调优 pprof
    • Go语言设计模式
    • Go 切片的截取
    • Go runtime详解
    • go执行外部命令
    • 标准库container三剑客:head、list、ring
    • go与http代理
    • Go内存管理
    • Go垃圾回收机制
    • Go语言中的并发编程
    • Go协程调度原理及GPM模型
    • Go中逃逸现象, 变量+堆栈
    • Go面向对象的思维理解interface
    • Go中的Defer
    • Go和Python中的深浅拷贝
      • 1. Golang
      • 2. Python
      • 3. 总结
    • Go语言内存对齐
    • 流和IO多路复用
    • 单点Server的N种并发模型汇总
    • 控制goroutine的数量
    • 配置管理库—Viper
    • 高性能日志库zap
    • Go中的Mutex和RWMutex.md
    • sqlx的使用
    • 分布式id 库snowflake和sonyflake
    • sync.Pool 复用对象
    • sync.Once 单例模式
    • sync.Cond 条件变量
    • unsafe.Pointer 和 uintptr
    • go 信号量
    • go语言代码优化技巧
    • go 接口型函数
    • 位运算
    • cgo教程
    • go调用lib和so动态库
  • go语言实现原理

  • gin框架

  • gorm

  • go测试

  • Go语言
  • go语言进阶
bigox
2021-12-22
目录

Go和Python中的深浅拷贝

# 1. Golang

  • go 深拷贝, 就是拷贝值
  • go 浅拷贝, 拷贝引用
  • go中赋值就能实现拷贝,针对引用类型(slice,map,channel)是浅拷贝,对值类型是深拷贝

1、深拷贝(Deep Copy):

拷贝的是数据本身,创造一个样的新对象,新创建的对象与原对象不共享内存,新创建的对象在内存中开辟一个新的内存地址,新对象值修改时不会影响原对象值。既然内存地址不同,释放内存地址时,可分别释放。

值类型的数据,默认全部都是深复制,Array、Int、String、Struct、Float,Bool。

2、浅拷贝(Shallow Copy):

拷贝的是数据地址,只复制指向的对象的指针,此时新对象和老对象指向的内存地址是一样的,新对象值修改时老对象也会变化。释放内存地址时,同时释放内存地址。

引用类型的数据,默认全部都是浅复制,Slice,Map, channel。

二、本质区别: 是否真正获取(复制)对象实体,而不是引用。

三、如何理解? 这里举个例子,比如P2复制了P1,修改P1属性的时候,观察P2的属性是否会产生变化

1、P2的属性变化了,说明这是浅拷贝,堆中内存还是同一个值。

p2=&p1 // 浅拷贝,p2为指针,p1和p2共用一个内存地址 2、P2的属性没变化,说明这是深拷贝,堆中内存是不同的值了。

p2=p1 // 深拷贝,生成两个内存地址 四、演示示例: 深拷贝示例:

package main

import (
   "fmt"
)

// 定义一个Robot结构体
type Robot struct {
   Name  string
   Color string
   Model string
}

func main() {
   fmt.Println("深拷贝 内容一样,改变其中一个对象的值时,另一个不会变化。")
   robot1 := Robot{
      Name:  "小白-X型-V1.0",
      Color: "白色",
      Model: "小型",
   }
   robot2 := robot1
   fmt.Printf("Robot 1:%s\t内存地址:%p \n", robot1, &robot1)
   fmt.Printf("Robot 2:%s\t内存地址:%p \n", robot2, &robot2)

   fmt.Println("修改Robot1的Name属性值")
   robot1.Name = "小白-X型-V1.1"

   fmt.Printf("Robot 1:%s\t内存地址:%p \n", robot1, &robot1)
   fmt.Printf("Robot 2:%s\t内存地址:%p \n", robot2, &robot2)

}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

运行结果:

深拷贝 内容一样,改变其中一个对象的值时,另一个不会变化。
Robot 1:{小白-X型-V1.0 白色 小型}      内存地址:0xc000072330
Robot 2:{小白-X型-V1.0 白色 小型}      内存地址:0xc000072360
修改Robot1的Name属性值
Robot 1:{小白-X型-V1.1 白色 小型}      内存地址:0xc000072330
Robot 2:{小白-X型-V1.0 白色 小型}      内存地址:0xc000072360
1
2
3
4
5
6

深拷贝中,我们可以看到Robot1号的地址与Robot2号的内存地址是不同的,修改Robot1号的Name属性时,Robot2号不会变化。

浅拷贝我们用两种方式来介绍。

浅拷贝示例1:

package main

import (
   "fmt"
)

// 定义一个Robot结构体
type Robot struct {
   Name  string
   Color string
   Model string
}

func main() {

   fmt.Println("浅拷贝 内容和内存地址一样,改变其中一个对象的值时,另一个同时变化。")
   robot1 := Robot{
      Name:  "小白-X型-V1.0",
      Color: "白色",
      Model: "小型",
   }
   robot2 := &robot1
   fmt.Printf("Robot 1:%s\t内存地址:%p \n", robot1, &robot1)
   fmt.Printf("Robot 2:%s\t内存地址:%p \n", robot2, robot2)

   fmt.Println("在这里面修改Robot1的Name和Color属性")
   robot1.Name = "小黑-X型-V1.1"
   robot1.Color = "黑色"

   fmt.Printf("Robot 1:%s\t内存地址:%p \n", robot1, &robot1)
   fmt.Printf("Robot 2:%s\t内存地址:%p \n", robot2, robot2)

}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

运行结果1:

浅拷贝 内容和内存地址一样,改变其中一个对象的值时,另一个同时变化。
Robot 1:{小白-X型-V1.0 白色 小型}      内存地址:0xc000062330
Robot 2:&{小白-X型-V1.0 白色 小型}     内存地址:0xc000062330
在这里面修改Robot1的Name和Color属性
Robot 1:{小黑-X型-V1.1 黑色 小型}      内存地址:0xc000062330
Robot 2:&{小黑-X型-V1.1 黑色 小型}     内存地址:0xc000062330
1
2
3
4
5
6

浅拷贝中,我们可以看到Robot1和Robot2的内存地址是相同的,修改其中一个对象的属性时,另一个也会产生变化。

浅拷贝示例2:

package main

import (
   "fmt"
)

// 定义一个Robot结构体
type Robot struct {
   Name  string
   Color string
   Model string
}

func main() {

   fmt.Println("浅拷贝 使用new方式")
   robot1 := new(Robot)
   robot1.Name = "小白-X型-V1.0"
   robot1.Color = "白色"
   robot1.Model = "小型"

   robot2 := robot1
   fmt.Printf("Robot 1:%s\t内存地址:%p \n", robot1, robot1)
   fmt.Printf("Robot 2:%s\t内存地址:%p \n", robot2, robot2)

   fmt.Println("在这里面修改Robot1的Name和Color属性")
   robot1.Name = "小蓝-X型-V1.2"
   robot1.Color = "蓝色"

   fmt.Printf("Robot 1:%s\t内存地址:%p \n", robot1, robot1)
   fmt.Printf("Robot 2:%s\t内存地址:%p \n", robot2, robot2)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

运行结果:

浅拷贝 使用new方式
Robot 1:&{小白-X型-V1.0 白色 小型}     内存地址:0xc000068330
Robot 2:&{小白-X型-V1.0 白色 小型}     内存地址:0xc000068330
在这里面修改Robot1的Name和Color属性
Robot 1:&{小黑-X型-V1.2 黑色 小型}     内存地址:0xc000068330
Robot 2:&{小黑-X型-V1.2 黑色 小型}     内存地址:0xc000068330
1
2
3
4
5
6

new操作,robot2 := robot1,看上去是深拷贝,其实是浅拷贝,robot2和robot1两个指针共用同一个内存地址。

# 2. Python

对于不可变数据类型来说都一样,对于可变数据类型:
# 浅拷贝:
只拷贝数据的第一层
# 深拷贝:
对于可变的数据类型,拷贝拷贝嵌套层级中的所有可变类型
----------------------------------------------------------
id(查看内存地址),赋值更改内存地址,内部变更改变量的值
# 内存地址
a = 1
b = 1
id(a) = id(b)
#按理说a与b的id不该一样,但是在python中,为了提高运算性能,对某些特殊情况进行了缓存.(小数据池)缓存
对象:
1. 整型: -5 ~ 256
2. 字符串:"alex",'asfasd asdf asdf d_asdf ' ----"f_*" * 3 - 重新开辟内存。
== 与is 区别
==比较的是值是否一致
is 比较内存地址是否一致
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
img img

# 3. 总结

  • go深拷贝, 就是拷贝值
  • go浅拷贝, 拷贝引用
  • go中赋值就能实现拷贝,针对引用类型(slice,map,channel)是浅拷贝,对值类型是深拷贝
  • python 深浅拷贝针对可变类型的
  • python 深拷贝,拷贝是所有层引用
  • python 浅拷贝,拷贝是第一层引用
#Go#
上次更新: 2023/04/16, 18:35:33
Go中的Defer
Go语言内存对齐

← Go中的Defer Go语言内存对齐→

最近更新
01
go与http代理
05-24
02
自制申威架构k8s-reloader
12-06
03
Docker Buildx 教程
12-01
更多文章>
Theme by Vdoing | Copyright © 2020-2024 小刘扎扎 | MIT License
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式